
Journal of Engineering Physics and Thermophysics, Vol. 64, No. 6, 1993 

M O D E L I N G  O F  T H E  D Y N A M I C S  O F  T H E  

H O M O G E N E O U S  T U R B U L E N C E  O F  S T E A D I L Y  

S T R A T I F I E D  M E D I A  

B. A. Kolovandin UDC 532.517.4 

Numerical modeling of the dynamics of the homogeneous turbulence of a steadily stratified liquid has been 

accomplished in the presence of vertical constant density gradient on the basis of a uiu j - -~u--U i p - - ~ p  

second-order model, right up to the final stage of degeneration. The structure of relict turbulence has been 

investigated for values of the molecular Prandtl numbers corresponding to air and a sea wave. 

INTRODUCTION 

Laws governing the dynamics (evolution) of the homogeneous turbulence of a steadily stratified liquid are 

of great theoretical and practical interest. From the theoretical point of view, this can be explained by the possibility 

of a more detailed (as compared to the shear turbulence of general form) investigation of the role of the density 

gradient as a turbulence generator in an actively stratified medium. From the practical viewpoint, homogeneous 
turbulence of a steadily stratified liquid is a realistic enough model of the upper atmosphere or the thermohalocline 

region in the ocean. 

In order to elucidate fundamental specific features of the evolution of the steadily stratified homogeneous 

turbulence, in recent years experimental investigations were carried out both for a liquid (salt solution) and for air. 

In the work of T. D. Dickey and G. L. Mellor [1 ], which, evidently, is the first, carried out on the level of statistical 

parameters of experimental study of turbulence in a steadily stratified liquid, they have discovered a wavelike 

variation of the dispersion of vertical velocity fluctuations in the course of attaining a definite value of the 

dimensionless time Nt, which, by assumption, is indicative of the transfer of turbulent fluctuations to the field of 

internal waves. Besides, at the same value of Nt, a stepwise decrease in the rate of dissipation of the kinetic energy 

eu of disturbances has been discovered, confirming the existence of the transfer to the weakly dissipative wave process 
(in subsequent experiments the indicated behavior of e u has not been recorded). A wavelike behavior of the energy 
of transverse velocity fluctuations has been confirmed for the first time in the work of Riley et al. [2 ], who carried 

out a numerical study of the evolution of the homogeneous turbulence in the case of the steady stratification of a 

medium. At the same time, however, a stepwise change in the parameter eu has not been established, which testifies 

to the deficiency of the predominant contribution of internal waves to the velocity field, at least for the investigated 

range of Nt. 
In the experimental works (more detailed than [1 ]) of Stillinger et al. [3 ] and Itsweire et al. [4 ] a great 

number of "energy" characteristics of the velocity and density fields, various characteristic length scales associated 

with the velocity and density fields, and the transverse turbulent density flux have been investigated. The latter 
parameter has been found to be extremely important for interpretating specific features attributed to the role of 
gravitation in the evolution of homogeneous turbulence. It has been shown that the parameter considered decreases 
to zero (the conventional collapse of turbulence) and then, with increase in Nt, acquires negative values, i.e., a 
countergradient density transfer is observed. Whereas in early investigations it has been assumed that the condition 
u2p = 0 denotes a complete suppression of velocity vertical fluctuations and transition to the so-called two- 

dimensional relict turbulence, in [3, 4 ] they have demonstrated that gravitation slows down (as compared to the case 
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of passive stratification) the degeneration of vertical fluctuations, i.e., after the "collapse" point they remain even 

still more significant than in the absence of the gravitation effect. In the indicated references it was shown that after 

'the point at which ~ = 0, a wavelike variation of all measured parameters is observed, and at the same time in the 

energy of vertical fluctuations a "break" in the degeneration law has been observed: the values of u2 2, averaged over 

the amplitude of fluctuations, degenerate after the "collapse" point in a self-similar way, just as before the "collapse" 

point, but with a smaller exponent in the power law (all the above refers, of course, to comparatively large values of 

turbulent Reynolds and Peclet numbers, corresponding to the indicated experiments). 

In the most detailed experimental work of Lienhard and Van Atta [5 ], conducted for temperature-stratified 

air, the concept of homogeneous turbulence of a steadily stratified medium was developed as an intrinsically two-scale 

process, in which large-scale vortices are controlled by buoyancy forces, and small-scale ones - by viscosity. In view 

of this concept, it is shown that the condition u2 p = 0 does not imply the disappearance of active turbulent mixing, 

but is evidence of an important regularity of the stratified liquid turbulence: at a certain value of the "phase" Nt, the 

transverse mass flows associated with large and small vortices are equal in magnitude and opposite in sign. The change 

of the sign of the mass flux (countergradient transfer) is attributed especially to large-scale turbulent motion and is 

a consequence of restratification, i.e., the motion of large vortices "brought" by the turbulence from the region of 

higher density to the region of lower density, under the effect of gravity to the state of equilibrium, and further, to 

the region of higher density. As concerns the mass flux associated with small vortices, it is naturally directed at any 

moment of time. 

Thus, the scales at which a turbulent mixing occurs and the scales at which the generation of internal waves 

occurs, revealing itself in the sign change of the mass flux, are significantly spread over the spectrum of scales. As 

concerns the mechanism of energy transfer from a relatively small-scale turbulence to a large-scale wave motion, at 

present it is not fairly clear. To elucidate this extremely important problem, a number of trials have been undertaken 

of direct numerical modeling of the homogeneous turbulence evolution of a stratified liquid. The first attempt was 

made by Riley et al. [2 ]. It has been shown by the authors of this work that, although stratification does increase 

the rate of dissipation degeneration of the kinetic energy of disturbances, this parameter, however, remains large 

enough so that the turbulence energy could be considered to be completely converted to the energy of internal waves. 

Thus, it follows from this work that, at least in the studied range of the dimensionless time Nt, internal gravitational 

waves coexist with the turbulence proper as with a purely stochastic field. 

A detailed numerical investigation of stochastic and wave modes in the turbulence of a stratified medium has 
been performed in the recent work of Metais and Herring [6 ]. 

The results obtained in the numerical investigations indicated above show that development of homogeneous 

turbulence in a steadily stratified medium has been studied thoroughly enough for moderate values of turbulent 

Prandtl and Peclet numbers. In real situations present in the atmosphere and ocean, the conditions of small values 

of RZ and PZ (atmosphere) and small values of Rz and moderate or even large values of Pz (thermohalocline region 

of the ocean) are realized. Therefore, if the references stated above have a certain relation to the atmosphere, they 

have no relation at all to the ocean, since the case Px >> Rz is as yet inaccessible for direct numerical modeling. 

Besides, for direct numerical modeling, large values of the evolution time, at which R2-* 0, are as yet also inaccessible. 

In the present work an attempt has been made to apply the second-order model developed by the author of 

[7 ] to the study of the dynamics of the steadily stratified turbulence of a Boussinesq liquid. The following problems 
have been stated: 

- the study of the dynamics of a relatively strong turbulence at various values of the total Froude number Fr 
-~ NM/U; 

- the study of the effect of the molecular Prandtl number on the evolution (degeneration) of a moderately 
strong stratified turbulence; 

- the study of the transfer of a moderately strong stratified turbulence to a weak relict turbulence, and 
investigation of the relative role of internal waves and turbulence proper at a very large time of evolution. 

515 



1. BASIC EQUATIONS, SCALES, AND PARAMETERS 

The second-order model of the homogeneous turbulence of a steadily stratified Boussinesq liquid is 

comprised of the following differential equations (the details of the account for gravitation in various model equations 

are omitted). 

1.1. Model  equation for the tensor of Reynolds stresses 

D uiuj - -  Pii -+- 2 E ti - -  @ii = - -  ~ (g~ ~ q- gi--~it), 
D t  

where 
PiJ = - -  (uluk dU fldxh -t- ujukdUi/dxh) 

is the second-rank tensor of generating Reynolds stresses due to the averaged shear of the mean velocity; 

c ~i ------- ~, ( -  A u ~ u ) t = o  = 
1 

(dais -~ 6i~) Cu 
3 

is the model relationship for the rate of dissipation of Reynolds stresses; 

C~, = C '~. 

is the dissipation of the turbulence kinetic energy; 

is the deviator of the tensor UiUj; 

~ i j =  - -  

aij = 3u~uj/ qt ~ 8~j 

1 ( Ou~ Ouj'~ cn(1~ m!?l m(3~ 
p ~ q -  = ~ i i  + ~ , 1  + v i i  = 

p Oxj Ox~ / 

= - -  a~ (1 - -  d) aij E~ - -  b~ [~,~ q2 Si j  + (~b~j  + y~cij) Pkh] - -  

1 ~g~, [2uht----'Sij - -  3 (ui'--{6jh + uj-'--t6ih)] 
10 

is the model relation for the second-rank tensor of interaction between pressure fluctuations and gradients of velocity 

fluctuations, the three components of which determine, respectively, a "slow" return to isotropy, "rapid" deformation 

of turbulence by the mean shear and the change in the Reynolds stresses due to gravitation; 

q-~ ~ u 2 

is the doubled total kinetic energy of turbulence; 

Si~ = + ( d U j d x j  -V dUfldxi) 

is the second-rank tensor of the mean shear; 

is the deviator of the tensor Pij; 

bij = 3PiflPk~ - -  6ij 

c~j = 3D~j/Phh - -  15~i 

is the deviator of the tensor Dij; 

Di~ = -- (uiuhdUh/dxi  -Jr- u jukdUh/dxi); 
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= - -  (1/po) (dp/dT)o 

is the coefficient of the medium thermal expansion; au, bu, du, au, flu, 7u are model coefficients, which, in general, 

are certain functions of the governing parameters; in the homogeneous turbulence considered, the turbulent Prandtl 

number 

is the parameter of the ratio the rate of turbulent kinetic energy generation to the rate of dissipation; 

P---~ = P h d 2 C u ,  

is the Taylor microscale of the length 2u, which in the considered homogeneous anisotropic turbulence can be defined 

by the relation 

z , .  2 = 5@/C~ = 5~,  

where r u = ~-2/Cu is the time scale which is attributed to the turbulent velocity field. 

1.2. The  exac t  solut ion for  the m e a n  value o f  the squared scalar pulsa t ions  

where 

D _ _  

t ~ -t- 2 (1 ~ Pt) E t = O, 
Dt 

Ct = • (3t/Oxh) ~ ----- • ( - -  Ag tt )t=0 

is the rate of "smearing" of scalar fluctuations; 

Pt = Pt t /2Ct  

is the ratio of the rate of generation of scalar fluctuations due to the gradient vector of its mean value 

Pu = --2h--~kt0T/0Xk to the rate of destruction •t. 

1.3. M o d e l  equation for  the f low  vector o f  a scalar value 

where 

D 

Dt  

m 

ui t  - -  P u  I q-- E~i - -  (I)it =- - -  a g i  tq, 

Pi t  = - -  (u iuhdT/dxh  @ u k t d U d d x h )  

is the vector of generation of the turbulent flux at the expense of the gradients of the mean values of velocity and 

scalar value; 

1 - -  
C~t == du u d  

T u t w  

is the model relation for the rate of "smearing" of the flux Fit ;  

1 c)t 
r ~-- p - -  _= 

p Ox~ 
r I ~ ) -  I- (t "~(3) 
"~  it t 

= - - a u t ( 1 - - d u )  - -  
) u g - r  

T u t s  
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'1 
+ ---if- (4dUi/d&~ - -  d,Uh/'dx~) ~ + 

1 + 
3 

is the model relation for the vector of interaction between the pressure fluctuations and the gradients of scalar 
fluctuations (the relations for r and ~ t  3) are the exact ones); 

- 1  �9 ~ F ~ s  -~ - ~  a~, "c.,, [4 -]- nt~ (u,/q') R - -  - f  =l x71 

is the model equation for the mixed time scale Tu for R~ >> 1, PZ >> 1, P--u = const, Pt = const, n~s I = 20 is the velocity 
component in the direction of the scalar substance gradient; 

--1 
T.t~, = [2 (Or.~0 + 3 / 5 )  R/R~wo - -  F~] ~71 

is the model relation for the mixed time scale for RX << 1, Pa << 1, P--u = const, Pt = const; 

Crra~~ 1 - - a - - o / [ 1 - - (  l+o2z )3/z]  

is the asymptotic (for a large evolution time) value of the turbulent Prandtl  number for Rz << 1, P2 << 1, Pt = const, 
_ 21/2 / 
Pt -" const (the Deissler equation [8 ]); Px = ~ )It x is the turbulent Peclet number; 

,~t 2 = 6 •  = 6• 

is the Taylor length microscale which refers to a scalar field; 

x t = t~/Et 

is the time scale, attributed to a scalar field; 

Raw0 = "-'5--- 1 - - 2  4 - 0  3/2 1 - - 2  + o  1/2 
1 + o  . ' l + o  

is the parameter of the ratio of time scales Zu/rt of the homogeneous turbulence for RX << 1, PX << 1, Pu = 0, P-t = 

const (the exact solution of Dunn and Reid [9 ]) ; a is the molecular Prandtl  number. 

1.4. Model  equation for the rate of dissipation of the turbulent kinetic energy 

where 

Dt 1 .__r,_ • "rutw 

= GEN + DIS + IN 

is the model relation for the sum of three effects: generation of ~ u  due to the mean shear (GEN = 0 for RZ >> 1), 

--2 1 /vEu) ,  variation ~u z owing to the extension (compression) destruction of the quantity E u (or the vorticity ~o u = 

of vortex filaments (see the details in [7 ]). 
The r ight-hand side of the equation involved simulates the effect of gravity on the vorticity o f  the field of 

velocity fluctuations. 

The coefficient Fu* associated with the combined effect of the vorticity destruction and the extension of the 
vortex filaments of an isotropic velocity field is simulated by a function of the turbulent Reynolds number: 
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F** (Rx) ** F **'4 

* *  @ *  

where Fus = 11/3 and Fuw = 1 4 / 5  are for the asymptotic values for Rt >> 1 and RI << 1, which are found analytically. 

The parameter du is the empirical function of the turbulent Reynolds number; in the present work, it is 

assigned in the form 

d u = 1 ' 2(1--}- V1 + {~/I~2) -1 

The remaining coefficients of the model presented are of the following form (see the detailed description in [7 ]): 

b~ = 2 {1 -k [(as)F~* --2)(1 - - d ~ )  q- (a~/F,~, - -  2) d = l P u } - ' ,  

10 

4 

33 

1 
~ - -  - -  d ~ ,  

33 

a u ~ 3, 

8~ _~ 2800, 

as "-' 1, 

% ~ 0,5. 

1.5. M o d e l  equat ion for  the rate o f  " smear ing '  o f  the scalar value f luc tuat ions  

D - -  1 - -  1 1 
Dt " Gt = 2dPuGt  - -  q- 2dPt  - -  Gt 

T u 1 -t- c; Tut u. 

. 1 
- -  (F*l q- Ft2R) g t 

Tu 

where the first two terms in the right-hand side of the equation simulate the effect of generation of the parameter 

~C t due to the shear of the mean velocity and the gradient of the scalar mean value (in the case of strong turbulence 

this effect is absent); the second two terms simulate the combined effect of generation of the parameter •t due to 

the deformation of vortex filaments of the velocity field and "formations" of the scalar field associated with them and 

also the destruction of the parameter C t due to molecular diffusion. 

The coefficients Ft* 1 and Ft* 2 are simulated by the following functions of the turbulent Reynolds and Peclet 

numbers and also the parameters RZ and P2: 

F~I = F~I '~ - -  P'--a -~- d u l l  P'---u, 

/ 2Pt  
[t ---= (1 l q - o  

�9 4 ( R a . , O - - -  

- k l ,  

-I + G , 
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( 3) 4 - - g -  
h = Ra 0 1 

l q - ~  l ~ ( r  

The coefficients Ft*l* and Ft'~ model the effects stated above in the case of isotropy of velocity and scalar value 

fields in the form of the following functions of the turbulent Reynolds number: 

F ~ x * = F * * - - 2 - -  A du, 
5 

4 

2. THE DYNAMICS OF THE TURBULENCE OF A STEADILY STRATIFIED LIQUID 

In the present section, based on the second-order model considered above, the dynamics of the homogeneous 

turbulence of a steadily stratified liquid is investigated in the absence of the mean velocity shear. It is assumed that 

in an infinite liquid volume with a constant vertical density gradient d/~/dx2 = const (the coordinate x2 is in a vertical 

direction, opposite to the direction of the acceleration of gravity) the evolution of turbulence occurs from the initial 

state, corresponding to a three-dimensional homogeneous isotropic turbulence. 

As is known, in the stratified liquid, when the state of equilibrium is violated, oscillations originate (internal 

gravitational waves) with the Brent-V~iis~il~i frequency 

N = ( PO--g dxudpO ) | /2 

In the case of a turbulized liquid, oscillations of gravitational character involve liquid elements with a wide 

range of turbulent fluctuations, the turbulent modes with frequencies commensurable with the Brent-Viiisiilii 

frequency being found subjected to the effect of buoyancy forces. In the vertical direction, displacement of the 

turbulized element is estimated by the so-called scale of "build-up" 

2zi/~., . - -  

Lt = p U(apoldx~), 

where 5 2 is the mean square density fluctuations. This length scale characterizes the maximum possible dimension 

of large turbulent modes in the stratified turbulence. 

The "adjustment" of the turbulence developing in time to the internal gravitational waves can easily be 

illustrated on the example of past-grid turbulence, At small times of evolution, when the turbulence is still practically 

isotropic, the known relationships for the turbulent energy and Taylor length scales are maintained: 

q2 ... T-l, ~.u ~" zl /2 

At the same time it is easily seen that the turbulent Froude number (here, the value which is in inverse proportion 

to the generally accepted one is employed, so that in the absence of gravitation the value of the parameter defining 

the gravitation effect would be equal to zero) 

will evolve by the "law" 

Frr  = N ;~/~1/2 

Frr  ~ Nt. 

From this estimate it follows that at small evolution times, FrT << 1, i.e., the gravitation does not affect the 

turbulence. For the time t - N -1, the parameter FrT reaches a value of the order of unity, i.e., the inertial effects of 

turbulence and gravitation become commensurable. At these evolution times, wavelike variations of statistical 

parameters of turbulence must begin. 
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Fig. 1. Evolution of the transverse mass (or heat) flux q -- u2 p~ UM (-d~/dx2): 
1) Fr = NM/U -- 0.037; 2) 0.063; 3) 0. t52 (the experiment for water [4 ]); 4) Fr 
= 0.024 (the experiment for air [5 ]); solid lines indicate numerical modeling. 

Experimental data obtained in recent years for the turbulence of a steadily stratified liquid [3-5 ], evolving 

in the wake behind the turbulizing grid, show that the wavy variation downstream of the time-averaged parameters 

is one of the peculiar features of steadily stratified turbulence evolution. As a result of the stated experiments, a series 

of conclusions have been made both about the phenomenon of passing over from the collapse to the assumed 

quasi-two-dimensional turbulence and inner gravitational waves at relatively small distances from the grid and also 

about the interaction between the turbulence and internal waves after the "collapse." However, the question of 

whether the three-dimensional turbulence under the gravity effect transfers into a quasi-two-dimensional or 

gravitational wave or into the "mixed" field of turbulence and internal waves still remains open, since this can be 

clarified only in the case of large evolution times which are as yet inaccessible either for direct modeling or for a 

physical experiment. 

In the present work there is an attempt to apply an apparatus alternative to direct numerical modeling (the 

second-order model describing the dynamics of the coupled fields of velocity and density) for investigating the 

transition of three-dimensional turbulence in a steadily stratified medium to the final stage of evolution, in order to 

elucidate the field structure at this stage --  whether this is a two-dimensional turbulence (as is predicted in certain 

theoretical works) or field of internal waves or a "mixture" of turbulent and wave modes. 

Here, a fairly reasonable question arises: on what is the certainty based that the prediction of the behavior 

of the steadily stratified turbulence on the basis of the suggested model is adequate at large times of evolution? One 

can answer quite definitely that, first, it is based on the satisfactory agreement between predicted and experimental 

results in the case of strong turbulence of an unstratified liquid (see [10 ]), second, on the satisfactoriness of the 

model to an exact asymptotics [9 ] in the case of weak turbulence, i.e., at very large times of evolution, and, finally, 

on the triviality of the account for a gravitation effect model in differential equations. 

Below, we shall try: to interpret the obtained numerical results, correlate them, when possible, with the 

experimental data of other authors; to investigate the degeneration of the steadily stratified turbulence after the 

"collapse," having elucidated here the role of the molecular Prandtl number; to consider the dynamic character of 

the steadily stratified turbulence at small values of the turbulent Reynolds and Peclet numbers, i.e., to learn, whether 

it really tends to a two-dimensional state, as follows from a number of theoretical research works. 

2.1. The dynamics of a moderately strong turbulence of a steadily stratified liquid 

Let us analyze the results of the numerical modeling of the moderately strong turbulence dynamics of a 

steadily stratified medium, realized in the experiments of Itsweire et al. [4 ] for water and of Lienhard and Van Atta 
[5 ] for air. Among a large number of experiments [4 ] carried out on water, let us choose three, corresponding to 
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Fig. 2. Evolution of the kinetic energy of transverse velocity fluctuations ~2 /U2; 
notation is that of Fig. 1. 

Fig. 3. Evolution of the total doubled turbulent kinetic energy q2/U2; notation 
is that of Fig. 1. 

different values of the Froude number (Fr -- NM/U -- 15.2.10-2; 6.3.10-2; 3.7- 10 -2) with the dimension of the grid 

cell M = 3.81" 10 -2 m. Among the experiments conducted on the air [5 ], we take the experiment corresponding to 

the following parameters: Fr = 2.4.10 -2, M = 5.08.10 -2 m. 

The numerical results presented below have been obtained as the solution to the Cauchy problem for a system 

of ordinary differential equations describing statistically mean values of the turbulence parameters: u~ , ~2, _Cu ' ~2, 

-Cp, u2 p; for air, the last three parameters are replaced by the quantities i 2, Ct, and h-~. The averaging sign here 

denotes the averaging over the ensemble of realizations. The initial conditions have been taken from the appropriate 

experiments. 

The numerical results show that the turbulent flux of a scalar substance u2 p (Fig. 1) defining the source 

gravitational terms in the equations for the parameters u 2 , ~2 and C u, performs fluctuations near the position u2 p 

= 0; here, the first intersection of this position occurs for Nt = 2.5; the period of fluctuations is estimated by the value 

T = 3.5N -1 independently of the values of the Froude number. 

Fluctuations of the function u2 p directly cause fluctuations transverse fluctuations of the velocity u~ (see 

Fig. 2), and through this function - the turbulence kinetic energy (Fig. 3). Less noticeable are fluctuations of the 

mean value of the horizontal velocity fluctuations Ul 2 (Fig. 4), since for them, the gravity effect reveals itself only by 

means of pressure fluctuations. 

Let us note that the absence of the vertical turbulent transfer of mass (or heat) which begins when Nt = 30 

(see Fig. 1) by no means attests to the suppression of the vertical velocity fluctuations, which, as follows from Fig. 

2, decay with a mean (over the amplitide of fluctuations) rate not exceeding the rate of degeneration of the velocity 

fluctuations of an unstratified liquid. 

The fluctuations of the function u2 p directly affect also the behavior of the density fluctuations (Fig. 5), but 
not through a source gravitational term of nongradient type (which in this equation is, naturally, absent), but through 

the rate of generating density fluctuations due to the mean density value 

Po~ = --2u=o@/dx.. 

For Nt < 1, the function ~-2 evolves similarly to the mean square of the passive scalar fluctuations (see, for example, 

[10 ]). When Nt = 2.5, the decay of the parameterp -~ begins qualitatively similarly to the decay of an isotropic passive 

scalar. The distinguishing feature from the isotropic case is the wavelike variation of density fluctuations with a period 
equal to the period of fluctuations of the transverse density flux. 
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Fig. 4. Evolution of the kinetic energy of longitudinal velocity fluctuations 
u~/U2; notation is that of Fig. 1. 

Fig.  5. Evo lu t i on  of the  d e n s i t y  (or t e m p e r a t u r e )  f l u c t u a t i o n s  
O = p2/M2(d/~/dx2)X; notation is that of Fig. 1. 

As is known, the wave like variation of turbulence parameters in a medium steadily stratified over the density 

testifies to the presence of a field of internal waves induced by the gravitational forces. As is known, an indicator of 

the turbulence transition to internal gravitational waves is the value of the ratio of the kinetic energy of the vertical 

velocity fluctuations 

K = ---if- p o l  --u~_ = ---if-1 ~oN2 (u~/N2) 

to the potential energy of the density flux 

1 - -  g ~ 1 
P poN2p2/(dp/dx2) 2, 

2 po (do/dx2)  2 

or the ratio of characteristic length scales 

P , ' 

where L b = (u2/N2) 1/2 is the buoyancy scale; Lt = p21/2/(d/5/dx2) is the "reversal" scale or characteristic vertical 

distance, at which the element of the turbulized liquid can be displaced from the state of equilibrium. The upper limit 

of the parameter L t is the scale Lb, determined by the turbulence lag. 

It is obvious that at small times of the strong turbulence evolution, the ratio Lb/L t exceeds unity, the 

contribution of internal waves to the turbulent field being insignificant. The condition 

t( 

P 

testifies to the "parity" of the turbulent disturbances of the velocity field in the vertical direction and internal waves; 
sometimes this condition is considered to be the condition of Conversion of turbulenceto internal waves, assuming 

that finally (at a very large evolution time), the turbulence will completely pass over into internal waves; it will be 
shown below that this transition is not always possible. 
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that of Fig. 1. 
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Fig. 7. Evolution of the turbulent Reynolds number Ra --2uq Iv; notation is 
that of Fig. 1. 
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The curves presented in Fig. 6 show that, in the region of a relatively strong turbulence (the turbulent 

Reynolds and Peclet numbers are presented in Figs. 7 and 8), the ratio of the scales Lb/Lt, similarly to a transverse 

mass flux, is a fluctuating function reaching the asymptote. At small values of the dimensionless time, Lb/L t > 1, 

which is indicative of the dominating contribution of turbulence to the disturbed field. The condition Lb/Lt -- 1 

corresponds to the coordinate Nt = 2. 

A minimum value of the function K/P corresponds to the coordinate Nt -- 2.5, i.e., to the point where the 

transverse mass flux q becomes zero for the first time. The asymptotic value reached by the ratio K/P equals 

approximately 0.7. 

Since, as shown above, for Nt= 2 the contribution of random internal waves to the superposition field becomes 

equally justified with the turbulence proper, starting with this point, one should expect the specific features of the 

dynamics of the considered parameters to be distinctive for a stratified liquid. Actually, from the data presented in 

Fig. 7, it is clear that for the value Nt = 2.5, corresponding to the "collapse" of the transverse mass flux, a stepwise 

decrease in the rate of degeneration of the turbulence lag is observed. It is caused, evidently, by the internal waves 

with a large period (in proportion to the Brent-V~iis~il~i period TBv -- 2n/N), which is shown by the stepwise change 

in the growth of the Taylor macroscale of the velocity field (Fig. 9) for Nt -- 2.5. 

Since the internal random waves are less dissipative structures than the turbulence, then, beginning from 

the same coordinate (Nt = 2.5), a slower degeneration of velocity fluctuations is observed (see Figs. 2-4). 

2.2. The effect of the molecular Prandtl number 

Realizations of the experiments and the appropriate modeling results considered in the present work refer 

to the moderately strong turbulence of a velocity field, which is confirmed by the plot of evolution of the turbulent 

Reynolds number (Fig. 7). At the same time, the turbulence of a scalar field is moderately strong for air and is fairly 

strong for water (see Fig. 8). In connection with this, one can expect that even at approximately equal values of the 
total Froude number, but different values of the molecular Prandtl number, the dynamics of turbulent parameters 

must differ. As follows from the figures considered above, in the near region (Nt < 1), where the effect of buoyancy 

forces on the velocity field is insignificant, the turbulent parameters behave similarly to the case of a passive scalar 

(see, for example, [10 ]): the velocity field parameters evolve in a self-similar way and, naturally, independently of 
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Fig. 9. Evolution of the Taylor macroscale of the velocity fluctuations Lu = Lu/M; 
notation is that of Fig. 1. 
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Fig. 10. Evolution of the Taylor macroscale of density fluctuations Lp = Lp/M; 
notation is that of Fig. 1. 

a; the dynamics of the scalar field parameters, in particular, of the parameters o and L t (Fig. 10), depends on the 

initial values of the ratio of the scales 

R O  _~_ _ _  

0 - -  0 z .  ,_ q~O .,Ep 6 L ~ 

,to p2O r 5 L~ 

which were sufficiently different in the experiments for air and water. In other words, the difference between the 

power exponents in the laws of the evolution of turbulent parameters of a scalar field in the region Nt< 1 is due not 

to the difference in the values of a, but to the initial value of the scale ratio R ~ 

In the region of "collapse," as stated above, a "break" in the laws of evolution of turbulent parameters occurs 

caused by the appearance of internal waves. After that "break," evolution of the parameters of the field representing 

the "mixture" of the turbulence proper and random internal waves occurs conditionally in a self-similar way, i.e., in 

a self-similar way for the parameters leveled over the amplitude of fluctuations. However, the rate of self-similar 
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Fig. 11. Evolution of the turbulent Reynolds number at the transient and final 
stages: 1) the water; 2) the air. 

Fig. 12. Evolution of the turbulent Peclet number at the transient and final stages: 
1) the water; 2) the air. 

evolution of the corresponding parameters differs considerably for air and water. Thus, from Fig. 3 it follows that 

the indicator of the rate of degeneration of the averaged (over the fluctuation amplitude) kinetic turbulent energy n 

in the power "law" 

q~ , . ,  (N t )  -~ 

is approximately equal to 0.8 for water and n "=- 1.63 for air. Such a sufficient difference in the rate of the kinetic 

energy degeneration after the "collapse" can be conditioned, on the one hand, by various contributions to the 

superposition field of random internal waves: a low rate of decay of the parameter ~-2 for water indiCates the large 

contribution to this parameter of the energy of random internal gravitational waves, promoting the creation of 

large-scale weakly dissipating inhomogeneities. 

On the other hand, the relatively high rate of degeneration of the kinetic turbulent energy in air, in 

comparison with water and also with the case of an unstratified medium, naturally, cannot be associated with the 

presence of internal waves. Apparently, it is explained by the relatively low lag of a scalar field (the evolution of the 

turbulent Peclet number is presented in Fig. 8). As is known, a weaker turbulence lag is accompanied by its more 

rapid degeneration. Therefore, in air, an earlier, than in the liquid, transition to the final stage can be observed. 

Thus, the effect of the molecular Prandtl number on the evolution of the velocity field parameters is revealed 

through the lag of a scalar field, i.e., the turbulent Peclet number PZ: the larger the value of this parameter, the 

greater is the contribution of internal waves to the disturbed velocity field. 
From Fig. 5 it follows that the molecular Prandtl number also exerts an effect on the degeneration of the 

mean square of the scalar fluctuations; here, starting from the value of Nt corresponding to the "collapse," the rates 
of degeneration of the averaged values of u 2 andp -2 (or i 2 for air) over the amplitude of fluctuations are found identical 

for the given value of a, so that the ratio of the kinetic energy to the potential one, being a fluctuating function of 

time, has a constant mean value which depends neigther on the total Froude number, nor on the molecular Prandtl 

number (see Fig. 6). 
It seems that this fact, which has not been reflected in the published works on this subject, is of great 

importance for generalizing the dynamics of a moderately strong homogeneous turbulence of a steadily stratified 

liquid. 
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Fig. 13. Evolution of the total turbulent kinetic energy at the transient and final 
stages: 1) water; 2) air. 

Fig. 14. Evolution of density fluctuations at the transient and final stages: 1) 
water; 2) air. 

2.3. Transition of the turbulence of a steadily stratified liquid to a final stage of 

evolution 

As is known from the dynamics of the homogeneous turbulence of a unstratified liquid, and also in compliance 

with the results of the present work, at large times of evolution the parameters R2 and P~ (see Figs. 7, 8) decay, i.e., 

in the process of evolution, the turbulence of a steadily stratified liquid loses its lag, when passing over to the final 

stage of degeneration, or, in correspondence with the oceanographical terminology, to the state of relict turbulence. 

To understand the nature of relict turbulence, of fundamental importance is the study of turbulence evolution 

over the transition region, i.e., at moderate values of the parameters RZ and PZ. 

For a detailed investigation of the evolution of a steadily stratified turbulence in this region of the parameters 
R~ and PZ, in the present work an analysis has been conducted of the numerical modeling results of two realizations 

of the experiment, which are distinguished by the values of the molecular Prandtl number and correspond to slightly 
varying values of the total Froude number: Itsweire et al. [4 ] for a = 900, Fr -- 3.7" 10 -2 and Lienhard and Van Atta 

[5 ] for a =  0.73 Fr -- 2.4- 10 -2. As follows from Figs. 11 and 12, approximation of the stratified turbulence to the final 

stage for the realizations considered occurs with a considerably different velocity: for a liquid, the state of a 
moderately strong turbulence is maintained up to Nt--  1011, whereas for air, the final stage of degeneration begins 
already at Nt ~ 104. 

In accordance with the different character of the increase in time of the lag of the velocity and scalar fields, 

the turbulent energy (Fig. 13) for the media considered decays unequally. At the final stage of degeneration ~-2 for 

air, which is established when Nt = 104, the indicator of the degeneration rate in the power law equals, just as for an 
unstratified medium, n = -5/2. For a liquid, the degeneration rate indicator ~ at the final stage, established when 
Nt = 1017, has a value approximately one half of that for air. 

The decay occurs qualitatively similarly to the turbulent kinetic energy in the far region of density (or 
temperature) fluctuations, presented in Fig. 14, in the domain of small values of the parameters R~ and PZ, the values 
of the indicators of degeneration degree of the parameter ~-2 for water and ~ for air being here approximately equal 

to the appropriate values of the indicator of degeneration of the parameter ~-2. 

To understand the character of the velocity and scalar fields in the far region, of fundamental importance is 
the behavior of length scales of power-containing vortices, i.e., the Taylor macroscales L u and Lp. As follows from 

Figs. 15 and 16, the behavior of the macroscales for air and water is in principle different: whereas for air the 
parameters Lu and Lt evolve similarly to the isotropic case (or to the case of the uniform field of a passive scalar for 
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Fig. 15. Evolution of the Taylor macroscale of velocity fluctuations at the 
transient and final stages: 1) water; 2) air. 

Fig. 16. Evolution of the Taylor macroscale of density fluctuations at the 
transient and final stages: 1) water; 2) air. 
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Fig. 17. Evolution of the ratio of the energy of transverse velocity fluctuations 
to the total kinetic energy at the transient and final stages; notation is that of 
Fig. 1: 1) water; 2) air. 

Fig. 18. Evolution of the ratio of the kinetic energy of transverse velocity 
fluctuations to the potential energy at the transient and final stages; notation is 
that of Fig. 1: 1) water; 2) air. 

Nt 

the parameter In), for water the indicated parameters grow infinitely. This fact can presumably be explained by the 

different contribution of internal waves to the far region for the two cases involved: for Nt >> 1, the effect of internal 

waves on air turbulence is insignificant, whereas in the liquid, internal waves become dominating. Although such an 
assumption is of a heuristic character, it is confirmed by the analysis of the evolution of other turbulent parameters. 

One of the most impressive pictures is the evolution of the parameter of the ratio of the kinetic energy of vertical 

fluctuations to the total kinetic energy of the velocity field (Fig. 17). As follows from the numerical results presented 
here, when Nt >> 1, the vertical velocity fluctuations in air appear earlier than in the case of longitudinal and lateral 

528 



OoOOG 

O.OO5 

0.00q- 

0.003 

0.0021 

~176 ] ~ 1,Z 
i i i ~ I i i I I I F f I i r E , i I I 

10 ,'-1' "1o "1/7 '1r "Io 'r "7/P 'N/: 
Fig. 19. Evolution of the transverse mass (or heat) flux q at the transient and 
final stages; notation is that of Fig. 1. 

fluctuations, i.e., the velocity field becomes two-dimensional. For water, the picture is the opposite one: at large values 

of Nt, vertical velocity fluctuations decay more slowly than the other two components, so that the parameter u~ / 0  

approaches unity, i.e., the velocity field in the case considered asymptotically approximates a quasi-one-dimensional 

one. 

The presumed picture of the structure of the relict turbulence described above is confirmed by the analysis 

of the evolution of the ratio of the kinetic energy of vertical velocity disturbances to the potential energy (Fig. 18). It 

follows from the figure that in the case of turbulence formation in a liquid, the parameter K/P  asymptotically (for 

Nt ~ oo) tends to zero (or a certain small value), which testifies to the dominating role of internal waves in the 

superposition velocity field for Nt >> 1. In the case of the air medium, for Nt >> 1 the parameter K/P  where the 

contribution of internal waves to the superposition velocity field somewhat exceeds the contribution of the turbulence 

proper, asymptotically approaches the value K/P  = 1 from the region K/P < 1, indicating a "parity" of the energy of 

vertical turbulent disturbances and internal waves. However, as is seen from Fig. 17, the contribution of vertical 

disturbances (both of the turbulence and of internal waves) to the three-dimensional velocity field is insignificant 

(the turbulence tends to a two-dimensional or horizontal one), i.e., in Fig. 18, only the curve corresponding to the 

liquid is of informative character as regards the analysis of the contribution of internal waves to the relict turbulence: 

it indicates the dominating role of internal waves in the relict turbulence of a steadily stratified viscous liquid. 

Thus, the analysis of the numerical modeling results for the evolution of the turbulence in steadily stratified 

media shows that depending on the molecular Prandtl number the relict turbulence, i.e., the turbulence of steadily 

stratified media for RZ << 1 and PZ < 1, can represent either a quasi-two-dimensional field with a predominant 

contribution of random two-dimensional disturbances and an insignificant "admixture" of internal waves (for 

gaseous media) or a quasi-one-dimensional field with a predominant contribution of quasi-one-dimensional (vertical) 

internal waves and an insignificant "admixture" of three-dimensional turbulence (for liquid media). 

3. THE STRUCTURE OF THE TURBULENCE OF STEADILY STRATIFIED MEDIA 

The analysis presented above allows one to assume that the disturbed field of steadily stratified media 
represents the "mixture" of the turbulence proper and internal gravitational waves, and depending on the molecular 

Prandtl number, the contribution of internal waves to the superposition field is diverse. It should be noted, however, 

that the conclusion made above about the contribution of internal waves into the disturbed velocity and scalar fields 

for Nt >> 1 is of heuristic character, since the functions considered above represent in the far region smooth curves 
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Fig. 22. Evolution in the near region of the Taylor macroscale of the density 
field: a) water, (Nt)0 = 1.0; (Lp/M)mi n = 13.9; b) air, (Lp/M)min = 10.06. 

not containing signs of wavelike motion either in a liquid or in a gas (see Figs. 17-19). Moreover, the evolution of a 

transverse mass flux, which is an indicator of the presence of wavelike motion of the medium, demonstrates (see Fig. 

19) the absence in the far region of any signs of anisotropy of a scalar field at all. 

In this connection, the necessity arises to analyze in detail in the process of time evolution the character of 
change of the parameters of a disturbed field with short periods of the argument Nt, which could give a verification 

of the existence of internal waves and would make it possible to elucidate their contribution to the disturbed fields 
of velocity and density. 
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Fig. 25. Evolution in the near region of the ratio of the kinetic energy of the 
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=(u2/N2)/p2/(c l~/dx2)2: a) water, (Nt)o -- 1.0, K / P  = 0.394; b) air, (Nt)o = 

In accordance with the data considered in previous sections, for Nt < 1 the turbulent  parameters  of a steadily 

stratified medium evolve qualitatively similarly to the case of independent  velocity and scalar fields. When Nt -- 

2.5-3.0, a conventional collapse of turbulence occurs, determined by vanishing of the transverse mass flux and 

indicating the formation of internal  gravitational waves. 

In view of the coherence of the velocity and density fields in a stratified medium, the presence of internal 

waves in the "mixed"  field must be revealed in the evolution of all turbulent  parameters referring both to the velocity 

field and to the density field. Actually, as follows from Figs. 20-25, already at the early stage of evolution of the 
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Fig. 28. Evolution at the transient stage of the ene[~y of transverse velocity 
fluctuations: a) water, (Nt)0 = 1014; b) air, (Nt)o = 10.  

steadily stratified turbulence comprising also the region of Nt to the "collapse," wavelike change of the turbulent 

parameters occurs, including also fluctuations of the function q relative to the zero value. Comparison of Figs. 25a 

and 25b shows that at the initial stage of evolution the contribution of internal waves to the disturbed field for a gas 

is somewhat smaller than for a liquid. The period of fluctuations of functions at the initial stage of evolution does not 
depend on the molecular Prandtl number and is approximately equal to 

T "~ 0,56TBv. 
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water, (Nt)o = 1022; b) air, (Nt)o = 10 TM. 

A peculiar feature of turbulence development in a steadily stratified liquid in the initial region is a counter- 

gradient vertical mass flux. Actually, as follows from Fig. 26a, the value of the parameter q averaged over a certain 

number of "periods" is negative. In the same region of the dimensionless time Nt the considered parameter for a gas 

is equal on the average to zero. 

In the transient region, determined by moderate values of the turbulent Reynolds and Peclet numbers and 
existing in the range 101~176 for a liquid and 102-1012 for air (see Fig. 18), the tendency in the development of the 

parameter q (see Fig. 27) is maintained, i.e., one can observe a counter-gradient transverse mass flux for a liquid 

and (on the average) zero heat flux for air. A wavelike behavior is characteristic also for other turbulent parameters 

in the transient region (Fig. 28), the period of fluctuations being invariable throughout the whole range of Nt 

considered above, including the initial region of evolution. 

At the final stage of evolution, defined by small values of the turbulent Reynolds and Peclet numbers and 

existing in the range Nt > 1020 for a liquid and Nt > 1012 for air, a wavelike character of evolution of the transverse 

turbulent flux of mass or heat is maintained (see Fig. 29). However, the qualitative difference between the evolution 

of this function at the stage considered and the previous one consists in the absence (on the average) of the turbulent 

mass flux for a liquid and in the re-establishment of the "gradient" heat flux for air. Here the period of fluctuations 

of the function q(Nt) for the water somewhat increased: 

T ~-' 0,7TBv; 

for air, the period of fluctuation practically did not change. 

Thus, both in the transient region and at the final stage of the evolution of the temperature-stratified 

turbulence the gravity plays the main role in the formation of the disturbed velocity field: 

at large values of the molecular Prandtl numbers characteristic for liquid media, internal waves play the 

predominant role in the vertical disturbances of the velocity field; decaying slower than the turbulent velocity 
fluctuations due to the lower dissipation of large-scale structures of wavelike character, internal waves lead to the 

formation for Nt --, ~o of a quasi-one-dimensional field, in which the intensity of vertical disturbances conditioned 

by the internal waves exceeds the intensity of longitudinal fluctuations by approximately an order; 

at values of the molecular Prandtl number of the order of unity characteristic for gases, internal waves do 

not play a governing role in the superposition velocity field; the role of gravitation is reduced to the suppression of 

vertical velocity disturbances (both internal waves and turbulent fluctuations), so that when Nt ~ oo, the velocity 

field represents a quasi-two-dimensional (horizontal) turbulence with an insignificant "admixture" of internal waves. 
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CONCLUSIONS 

The results are presented of the modeling of evolution of the homogeneous turbulence of a steadily stratified 

liquid at any distance from a certain arbitrary origin, say, from a turbulizing grid, which is the generator of a turbulent 

isotropic velocity field. The source of the turbulence of a scalar field is a constant transverse gradient of the mean 

density (or temperature), generating the disturbances of a scalar value. The cross-correlation of transverse (in the 

direction of the mean density gradient) velocity fluctuations and density fluctuations or the turbulent transverse flux 

of mass (or heat), being the source term in the equations for normal turbulent stresses and the rate of dissipation of 

the kinetic turbulent energy, determines, in essence, peculiar features of the evolution of the turbulent steadily 
stratified liquid. 

Specific features of turbulence evolution in the initial region 

1. The fundamental peculiar feature of the evolution of the considered homogeneous turbulence is a wavelike 

alternating-sign variation of the cross-correlation u2 p, i.e., interchange in time of "natural" and "counter-gradient" 

mass (or heat) fluxes with the period T = 3.5N -1 = 0.5Tar, independent of the Froude number. The results of 

modeling performed in the present work show that this singular feature is distinguishing for flows with any (including 

arbitrarily small) values of Brent-V/iisSl~i frequency. However, the amplitude of fluctuations of the indicated function 

decreases with decrease in the Froude number Fr -- NM/U. Thus, concerning experimental verification of this 

peculiarity, one should bear in mind that at small values of the Froude number the amplitude of fluctuations of the 

parameter u2 p can be sufficiently small, existing within the confidence interval of measurement, which makes it 

impossible to discern the presence of fluctuations directly from the experiment. Obviously, this situation is charac- 

teristic for definite, corresponding to small values of Fr, realizations of the experiments of Lienhard and Van Atta 

[5 ] and also Yoon and Warhaft [ 11 ], in which the sign alternation of the parameter u2 p is not evident. 

2. The sign of the transverse mass flux averaged over a large interval of the dimensionless time Nt depends 

on the contribution of internal waves to the disturbed field: with an insignificant role of internal waves, an ordinary 

turbulent transfer prevails; in the case of a significant contribution of internal waves, a counter-gradient transfer 

prevails (the sign of the turbulent mass flux is identical to the sign of the mean density gradient). 

3. In the region under consideration, owing to the fluctuating character of the transverse mass flux, all 

statistical mean turbulent characteristics of both the velocity field and the scalar field evolve in a wavelike way with 

the same period as the function u2p. Here, the value ~2P -- 0, recurring with the period stated above, by no means 

implies the suppression of vertical disturbances of the velocity. Moreover, the significant contribution of internal 

waves, the evidence of which is a wavelike variation of turbulence parameters, leads to a slower degeneration of the 

energy of velocity fluctuations than in the case of a passive scalar. This is natural enough, since the superposition 

field containing internal waves is less dissipative (more large-scale) than a purely turbulent velocity field. 

4. A significant contribution of internal waves to the "mixed" field is confirmed by a stepwise variation of 

the increase in Taylor macroscales of the velocity and scalar fields, starting with Nt = 2.5, i.e., from the moment 

when the transverse mass flux becomes sign-alternating. 

5. Values of the molecular Prandtl number distinctive for different media (air and liquid) determine a 

significant difference between the values of turbulent Peclet numbers. This explains the different rate of evolution 

of turbulent parameters in the experiments described above. 

6. The value of the ratio of the kinetic energy of transverse velocity fluctuations to the potential energy of 

the field density, averaged over the amplitude of fluctuations, is a universal constant in the case of strong turbulence, 

depending neither on the Froude number nor on the molecular Prandtl number and approximately equal to 0.65. 

PecuEar features of turbulence evolution when passing over to the final stage 

1. The transient region is characterized by a significant non-self-similarity of evolution of turbulent 
parameters. 
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2. The dimension of the transient region depends, to a great extent, on the molecular Prandtl number: it is 

larger, the higher the value of a. One cannot attribute this fact only to a relatively large turbulence lag in a liquid; 

the governing role, here, belongs to internal waves, the contribution of which to the superposition disturbed field is 

more significant in liquids than in gases. 

3. In the region considered, the turbulent macroscales of velocity and density fields evolve with a fundamental 

difference for the two considered media: for air, these are functions with a maximum in the domain of moderate 

values of the parameters RZ and P~, just as in the case of a passive scalar; for a liquid, these are functions infinitely 

growing over Nt. This fact is an indirect confirmation of a different contribution of internal waves to the superposition 

disturbed field in the far region for liquids and gases: in a steadily stratified gas, the contribution of internal waves 

to the disturbed field is insignificant, whereas the long internal waves in the disturbed far field of a steadily stratified 

liquid are predominant. 

4. The above said is confirmed by a number of facts, which, in particular, include the value of the rate of 

degeneration of the turbulence energy in a gas (Fig. 13), the indicator of which in the power law is n = -5/2. For a 

liquid, it is approximately one-half, which testifies to the dominating role of larger, i.e., less dissipative, structures 

in the disturbed field formed in a steadily stratified liquid. 

5. An important specific feature in principle of the turbulence evolution in various steadily stratified media 

is revealed in the ratio of the kinetic energy of transverse fluctuations to the total kinetic energy of velocity fluctuations 

(see Fig. 17): for a liquid, the value of this parameter tends to a value close to unity; for air - to zero. This means 

that the relict turbulence in a liquid is comprised, in general, of internal waves, and in a liquid - two-dimensional 

(horizontal) turbulence. 

6. Evidence of the dominating contribution of internal waves to the superposition velocity field in a liquid in 

the case of a large time of evolution is the tendency to a certain value (less than unity) of the ratio of the kinetic 

energy of transverse velocity fluctuations to the potential one. 

7. A qualitative difference between the disturbed velocity field in a liquid and in a gas at very large evolution 

times lies in the fact that the relict turbulence (i.e., the turbulence of steadily stratified media when R2 << 1 and P2 

<< 1) represents either quasi-two-dimensional random velocity disturbances (for gaseous media), or a quasi-one- 

dimensional velocity field induced by the predominant contribution of vertical internal waves for a >> 1. 

The turbulent structure of steadily stratified media 

1. The fluctuating character of the variation in time of turbulent parameters is a specific feature of the 

turbulence evolution in a steadily stratified medium as early as the early stage of its development, up t ~ the moment 

of time when the parameter u2 p vanishes for the first time. 

2. At the beginning of turbulence development, the sign of the transverse mass flux fluctuations averaged 

over certain number of periods depends on the molecular Prandfl number: in a liquid, the counter-gradient mass 
transfer prevails, whereas in a gas the transverse mass flux is practically absent. 

3. The fluctuation period of functions at the initial stage of evolution is independent of the molecular Prandtl 

number and approximately equals T = 0.56TBv. 

4. In the transient region the character of variation in time of turbulent parameters is qualitatively similar to 
the turbulence evolution in the initial region. 

5. At the final stage of turbulence evolution, the wavelike character of turbulent parameters of the velocity 

and scalar fields is maintained, but the amplitude of disturbances of parameters for a liquid considerably exceeds 

the amplitude of disturbances of the corresponding parameters for the air. 

6. For liquid media the period of disturbances of functions at the final stage somewhat increases in comparison 
with the previous transient region. 

7. The turbulent mass flux, averaged over the series of disturbance periods, for liquid media is practically 
absent; for a gas it acquires the usual sign associated with the gradient transfer. 

535 



The role of  stratification in disturbed fieM formation at large times of turbulence 

evolution 

The role of gravitation in the homogeneous turbulence of a steadily stratified liquid is revealed through the 
"participation" of internal waves in the "mixed" disturbed velocity field, which is reduced to the formation at large 
evolution times of a quasi-one-dimensional disturbed field with the predominance of wavelike disturbances in a liquid 

and a quasi-two-dimensional (horizontal) field with the prevalence of purely turbulent stochastic disturbances in a 
gas. 

The author expresses his deep gratitude to his colleague V. U. Bondarchuk for conducting a tedious numerical 
experiment. 

N O T A T I O N  

1/2Dij, the  s e c o n d - r a n k  tensor ;  Fr  -- N M / U ,  F roude  number ;  Fu, the  funct ion of in teract ion;  

Lt=/~ 2 /(d/50/dx2), the "build-up" scale; Lb=u2/N 2, buoyancy scale; K = (1/2)ff0u22 , the kinetic energy of 

vertical fluctuations; M, the dimension of the glad" cell; N =_!/2[(-g/p0)/d/~/dx2]l/2, Brent-VSis~il~i frequency; P--- 

(1/2)po(g/po)Ta/(dp/dx2) 2 , -  - turbulent potential -2 ~energy; p,~=q2 2p/x, the turbulent Peeler number; Pij, second- 
rank tensor of generating Reynolds stresses; R,l=q 2u/V, the turbulent Reynolds number; R = ru/rp, the ratio of 

time scales; Sij , second-rank tensor of the mean shear; TBv -- 27r/N, the Brent-V~iis~il~i period; Ui, velocity vector; 

du, the parameter of the turbulent Reynolds number; au, absolute constant; aut, bu, nts, variable coefficients; bij, 

deviator of the tensor Pij; cij, deviator of the tensor Dij; gi, vector of the gravity force acceleration; p, t, pressure and 

temperature fluctuations; a u, flu, Yu, variable coefficients; 5u, the coefficient in the parameter du; A, Laplace operator; 

Eu, rate of generation of velocity fluctuations; Ct, rate of generation of temperature fluctuations; ;tt, the Taylor 

microscale of a scalar field; 2u, the Taylor microscale of a velocity field; v, kinematic viscosity; r ,  molecular diffusion; 

cr = v /x ,  the molecular Prandtl number; p, density fluctuations of a liquid; if, mean density value; r, time; ru -- 

q2/Cu, time scale of the velocity field; ~p __~2/Cp, time scale of the density field; ~, the vector of the distance between 

two points. Subscripts: s, the condition of strong turbulence; w, the condition of weak turbulence; T, belonging of a 

parameter to a turbulized medium; 0, the condition of absence of shear; a, asymptotic value; u, belonging of a function 

to the velocity field; t, belonging of a function to the temperature field; p, belonging of the function to the density 

field; Superscripts: -, operator of ensemble averaging; ', belonging of a function to the second of the considered points. 
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